
Updates and Views Dependencies in Semi-structured
Databases

Françoise GIRE
CRI Paris 1 Panthéon Sorbonne University

90 rue de Tolbiac, 75013
Paris, France

gire@univ-paris1.fr

Hicham IDABAL
CRI Paris 1 Panthéon Sorbonne University

90 rue de Tolbiac, 75013
Paris, France

hidabal@univ-paris1.fr

ABSTRACT
In this paper we study the classical problem of the impact of
an update on a view defined over semi-structured data. We
adopt the following working hypotheses: (i) the source doc-
ument is modelized by an unranked, labeled, ordered tree,
(ii) a view V is a tree query whose evaluation on the source
document provides a desired partial view of the document,
(iii) a class of updates C is also given by a tree query se-
lecting the nodes to modify. We then study the following
problem: given a view query V and a class of updates C,
is it possible to detect if the view V is independent of each
update q in C? We show that the problem is in general
PSPACE-hard. We propose a sufficient condition evaluable
in polynomial time ensuring the independence of a view V
with respect to a class of updates C. We then consider the
class of linear view queries for which the problem becomes
polynomial.

Keywords Semi-structured Data, XML queries, Updates,
Views, Tree Automata

1. INTRODUCTION
Work relating to the management of semi-structured data

is increasingly growing in the literature, motivated by the
role of XML as a standard to exchange information on the
Web. This topic constitutes today one of the most active
fields of research in data processing. Static aspects of semi-
structured data management are largely present in the lit-
erature, but dynamic aspects relating to the evolution over
time of semi-structured data have just started being studied.
In the context of XML on the Web, the constantly changing
nature of the data has to be taken into account. In this
paper we investigate the problem of analyzing the impact of
an update operation on a view defined on semi-structured
data. For personalization or confidentiality needs, a view
gives a partial presentation of the information contained in
one or more source documents. Thus a view is modelized by
a query whose evaluation on the data sources provides the
desired partial presentation. In case of wide source docu-
ments, the cost of the view evaluation may be high. There-
fore avoiding, when possible, a view re-computation, is of
great interest for query optimization. The problem of ana-
lyzing the impact of updates on views precisely consists in
detecting if the result of the view query evaluation has been
modified after an update on the source documents.
The addressed problem is classical for relational databases
[10, 12, 21], it has been also examined for object databases
[2, 20] and for semi-structured data in several works [1, 14,

16, 17, 19, 23]. However in a majority of these works, the
problem has been studied by considering that the source
documents on which the view is evaluated are available and
the implemented methods are using these source documents.
We adopt here a different approach to analyze this problem:
we suppose that the source documents aren’t a priori avail-
able and that only the view query V and the update opera-
tion are given. We also modelize the update by a query C,
selecting nodes to be modified. Insofar as we don’t specify
how the nodes selected by C will be modified, C represents a
class of updates, namely all updates modifying exactly the
nodes selected by C. The statement of the problem we are
studying is then the following: given a view V and a class
C of updates, is it possible to determine if the view V is
independent with respect to C, i.e. if each update q in C
does not have any impact on the evaluation of V , on every
source document T . If a schema Sc constraining the source
documents is known, Sc will hopefully be used to refine the
impact analysis and to detect more cases of independence.
We thus also study the following version of the preceding
problem: given a view V , a class of updates C and a schema
Sc, is it possible to determine if the view V is independent
with respect to C in the context of Sc, i.e. if each update
q in C does not have any impact on the evaluation of V , on
every source document T valid with respect to Sc.

Our main result is to provide a sufficient condition for as-
suring the independence between a view V and a class of
updates C in the context of a schema Sc. This condition
is evaluable in polynomial time in the sizes of V , C and Sc.
We also show that, in general, the problem is PSPACE-hard.
Finally we consider the class of linear view queries for which
the problem becomes polynomial (without any restriction
on the class C of updates).

Related work
Some other works are similar to ours but take place in

the different context of optimization of query processing: in
[4] the authors exploit materialized XPath views in order
to expedite processing of XML queries and they develop an
XPath matching algorithm to determine when such views
can be used to answer an user query; in [13] maximal con-
tained rewriting under constraint is considered; also in [3],
a sound and complete view-based rewriting algorithm for
nested XQuery queries is proposed in the presence of struc-
tural and integrity constraints, which produces an algebraic
plan combining tree pattern views. These works differ from
ours on several aspects: (i) although similar, the rewriting
query problem using materialized views is different from the

1

independence query problem (ii) the chosen query language
is mostly XPath or XQuery while we opt here for the more
conceptual query language based on regular tree queries;
regular tree queries can express some fragments of XPath
queries but do not express XPath queries containing dis-
junctive conditions; however thanks to its regular pattern
matching feature, a regular tree query can express queries
not expressible in XPath (iii) some additional stored infor-
mation issued from the source documents, is used in the
proposed algorithms while we don’t use any kind of such
information but only specifications of the view query, of the
update operations and of the schema when available.

In the context of updates, other works have to be men-
tioned. In [5] the authors are interested in determining stat-
ically whether updates generated by a program can be ap-
plied before all querying is completed and they provide an
algorithm testing sufficient conditions for this property. Al-
though their analysis uses quite different techniques than
ours, involving satisfiability of particular systems of equa-
tions, the problem studied in [5] is closely related to our
independence query problem: actually, changing the update
evaluation ordering does not violate the semantics of the
program, if these updates do not interfere with each other.
Similarly to our work, [18] studies the problem of detect-
ing conflicts among XML update operations specified by
tree patterns of P ∗,//,[] introduced in [15]. The problem is
proved as NP-complete and a polynomial algorithm is given
when the read pattern is linear. In [7] the same problem
is addressed with the assumption that input documents are
typed by an XML schema. Again, our approach mainly dif-
fers from all these works by the choice of the regular tree
query model as conceptual query language which impacts on
the obtained results and the involved resolution techniques.

Outline The rest of the paper is organized as follows. Sec-
tion 2 presents the notions of independence between views
and update classes. Section 3 defines the regular tree query
model used to modelize views and update classes. In section
4 we analyze the independence query problem, and we give
in section 5 a sufficient condition for the independence. We
conclude in section 6.

2. PRELIMINARIES
In this work semi-structured data are XML documents

which are modelized by unranked, labeled, ordered trees
(Figure 1). In this model, character data in XML elements
are ignored, only elements defining the document structure
are represented as nodes of the unranked labeled tree. For-
mally, a document T is a pair T =(D, λ) where D is a tree
domain, (i.e. D is a subset of N∗ containing the empty
word and satisfying ∀i ∈ N, wi ∈ D ⇒ (w ∈ D and
wj ∈ D, ∀j < i)) and λ associates a label a ∈ Σ with each
node w in D. In the following, the domain D of T =(D, λ)
will be denoted by N (T). For each node w in N (T), we
denote by T (w), the sub-tree rooted at w in T and defined
by T (w) = (Dw, λw) with Dw = {wv/v ∈ N∗}∩D and λw is
the restriction of λ on Dw. For technical reasons, we adopt
the convention that the root is labeled with the symbol ’/’
in every document T .

2.1 Views and Updates
Views A view can be defined as a partial presentation and
reorganization of some source data, for personalization or

confidentiality needs. In the case of XML documents, the
execution of a view consists in two main steps: the first step
extracts from source documents a set of relevant nodes con-
taining the desired information; the second step reorganizes
the result obtained at the first step in order to meet the re-
quired personalized structure. Thus we can model a view V
as a composition of two applications : V = h ◦ t, where ap-
plication t selects the nodes to be extracted from the source
documents and application h proceeds to the reorganization
of these nodes to obtain the final result. This application h
doesn’t play any role in the independence analysis between
a view and an update, so we identify a view with its first
node extraction step i.e. V ' t. More precisely, we consider
in this work that (1) the source documents are consisting in
a single XML document T and that (2) a view V is a n-ary
query expressing the conditions, for a tuple of T ’s nodes,
to be extracted by V . We consider that the result of the
extraction of a node i returns the sub-tree T (i), rooted at i
in T . So the execution of a n-ary view query V on the doc-
ument T returns a set of sub-tree tuples (T (i1), ..., T (in))
corresponding to the node tuples (i1, ..., in) selected by V .

Example 1: Let us consider the document T of Figure 1
and the following binary view query V : ”Give the pairs (Ti-
tle, Author) for articles published in a journal”. Its evalua-
tion is {(t1, s1), (t1, s2)} with t1 = T (00110), s1 = T (00111)
and s2 = T (00112), i.e. the two pairs of sub-trees built from
the title and the two authors of the article corresponding to
node 0011.

Updates In this work we assume that an update on a XML
document T consists in (1) selecting a set of nodes in T to
be updated and (2) replacing the sub-tree T (w) rooted at
each selected node w by a new sub-tree. This modelization
covers most of current update operations, including insert-
ing/deleting sub-tree operations: actually such operations
can be viewed as updating the father nodes of the inser-
tion/deletion positions. Hence we define an update q of a
semi-structured document as the composition q = f ◦ C of
two applications f and C: application C selects the set of
nodes w to be updated and application f performs the up-
dates by replacement of the sub-trees T (w) rooted at these
nodes w. Application C represents in fact a class of updates:
two updates belong to the same class C if and only if they
are defined with the same node selecting application C.

Example 2: Let us consider the two following update queries
q1:”Modify the authors of an article by adding a phone num-
ber” and q2:”Modify the authors of an article by changing
element Name into two elements (Last Name, First Name)”.
Queries q1 and q2 belong to the same update class C select-
ing the authors of an article for a modification.

2.2 Independence between views and update
classes

Impact We say that an update q has an impact on a view
V of a document T if and only if the evaluations of V on
T before and after the update q do not produce the same
result, i.e V (q(T)) 6= V (T). Thus the update queries q1 and
q2 of Example 2 clearly have an impact on the view query
V of Example 1, since they modify the extracted sub-trees
s1 and s2.

2

/

UFR

Resources

Author

Publications

Author TypeAuthorTitle TitleJury

MembresPresident

Name Name

Name

Director

Name

Article

001120011100110

0

00

001
 Name

Thesis

Discipline

Openers

Mail MailName Journal Discipline

Name

Phone

0011

Name

Figure 1: A semi-structured document T

Independence The goal of this work is to directly analyze
both the view query V and the update query q in order to
detect an eventual impact of q on the result of V ’s evalua-
tion. It is important to note that our objective is to detect
this impact independently of the source document which is
supposed not available during the analysis. In addition, in
order to simplify the problem, we suppose that the specifi-
cation of the function f , performing the update, is unknown
and therefore that f can be of any type. Hence we adopt
to focus us on the detection of impacts of a whole class C of
updates (rather than of a particular update q) with respect
to a view evaluation. The problem is thus formally stated as
follows: V is independent with respect to the update class C
if and only if for every source document T , for every update
q in C, q doesn’t impact the view V of T .

Example 3 (impact/no impact) : Let us consider the fol-
lowing view query V ′ on the document T (Figure 1): ”Give
the pairs (Title, Author Name) for articles published in a
journal”. This query differs from the query V of Example
1 because only the Name node of an author, instead of the
whole Author node, is extracted with the Title node of an
article. Update q2 (Example 2) has clearly an impact on
this view since it modifies author names. Hence the class C,
selecting the article authors for modification, has an impact
on the view V ′ since there exists an update (q2) in this class
that impacts the result of V ′. If we consider the class C′
which selects the thesis authors (instead of the article au-
thors) for modification, view V ′ is clearly independent of the
class C′.

Independence in the context of a schema In many
cases, a schema constraining the source documents structure
is available. This additional information can then improve
the independence analysis. Let us denote by valid(Sc) the
set of valid documents with respect to a schema Sc. In this
context the independence definition is modified as follows:
V is independent with respect to an update class C in the
context of a schema Sc if and only if : ∀ T ∈ valid(Sc), ∀
q ∈ C with q(T) ∈ valid(Sc), q doesn’t impact the view V
of T .

3. TREE QUERIES
The preceding definitions of views and updates share a

common selection process of nodes (or of tuples of nodes)
that plays a main role. In this work we choose to use the
concept of tree query to model this process. Let us intro-
duce intuitively this concept by considering the binary query
”Give the pairs (Title, Author) of Article nodes”, and its
evaluation on the semi-structured document T of Figure 1.
This query can be represented by the tree query R shown in
Figure 3 which specifies the conditions, for a pair (i, j) of
T ’s nodes, to be extracted: (i, j) is extracted from T if it is
possible to find a mapping p of the tree R on the document
T , such that (see Figure 3) (1) grey nodes 3 and 4 of R are
precisely associated by p with nodes i and j i.e. p(3) = i,
p(4) = j and, (2) for each edge (i1, i2) of R, there exists
a path in the source document T between p(i1) and p(i2)
whose sequence of labels satisfies the constraints expressed
by the regular expression labeling the edge (i1, i2) in R.

Formally, a tree query on the alphabet Σ is a tree whose
edges are labeled by regular expressions on Σ. More pre-
cisely:

Definition 1. Let Σ be a finite alphabet of labels. A n-
ary tree query over Σ is defined by : R = (Σ, N, M, I, E)
where:
- (N, M) is a tree with N as finite set of nodes and M ⊆
N ×N as set of edges.
- E : M −→ REG(Σ) is an application which associates
with each edge (i, j) of M a regular expression of REG(Σ)
denoted by E(i,j)

- I is a tuple of specific nodes (i1, ..., in) representing the se-
lected nodes.

In the later, we denote by Out(i) the set of edges outgoing
from node i in R and we only consider tree queries R in
which Out(1) = 1. The size of R denoted by |R| is defined
by: |R| = |N | + Σe∈M |Ae| where Ae is a word automaton
associated to the regular expression Ee and |Ae| denotes the
size of Ae.

Figure 2 gives two examples of a tree query.

1

43

2

3 4

1

2

AuthorTitle

Σ∗.Article

(a) Tree query R

Article.T itle Article.Author

Σ∗

(b) Tree query R′

Figure 2: Tree queries

In the case of update operations, we restrict our approach
to unary tree queries whose updated node is a leaf. As we
will see later this assumption allows us to find a polynomial
sufficient condition assuring the independence of a view with
respect to a class of updates.

3

3.1 Evaluation of Tree queries
The evaluation of a n-ary tree query on a semi-structured
document uses the concept of mapping.

Definition 2. A mapping of a tree query R = (Σ, N, M, I, E)
on a semi-structured document T is an application p from
N to N (T) such that:

• If r is the root node of R then p(r) is the root node of
T labeled with ’/’

• ∀ n ∈ N , there exists m ∈ N(T) / p(n) = m

• ∀i, j ∈ N , if i ≤ j then p(i) ≤ p(j)

• If p(i) = p(j) then i = j

• ∀e = (i, j) ∈ M , there exists in T a path pij from p(i)
to p(j), excluding p(i) and including p(j), such that:
(a) the sequence denoted by p(e) of the labels occurring
on this path is a word of the language defined by E(i,j),
and (b) if e1 = (i, j) and e2 = (i, k) are two distinct
outgoing edges from node i then the paths pij and pik

have no common prefix.

Let us remark that the images, in a semi-structured docu-
ment, of mappings of the tree queries R and R′ of Figure 2
are quite different: the first ones extract pairs of nodes (Ti-
tle, Author) that are children of a same Article node, while
the second ones extract pairs of nodes (Title, Author) that
are children of two distinct Article nodes.

Author TypeAuthorTitle

Mail

Article

p(1)

p(2)

Thesis
...

PhonePublications

Resources

UFR

/

p(3)
p(4)

Article
...

 Name
1

43

2

Name Name DisciplineJournalMail

AuthorTitle

Σ∗.Article

Document T Query R

Figure 3: Mapping of query R on document T

Trace of a tree query with respect to a mapping
The trace of R in T with respect to the mapping p is the
smallest sub-tree of T containing the image p(N). We de-
note it by tracep(R, T).

Evaluation of a tree query Let R be a tree query , T
a semi-structured document and P the set of all mappings
of R on T .

• The result, denoted by Rp(T), of the evaluation of
R on T with respect to the mapping p of P , is the
tree tuple Rp(T) = (T (p(i1)), . . . , T (p(in))) where I =
(i1, ..., in) is the tuple of selected nodes of R.

• The result, denoted by R(T), of the evaluation of R
on T , is R(T) =

S
p∈P Rp(T)

/

UFR

Resources

Publications

Title

Article

Author

Figure 4: Trace of the tree query R

4. THE INDEPENDENCE PROBLEM

4.1 PSPACE-hardness

Proposition 1. Deciding whether a view V is indepen-
dent with respect to an update class C is a PSPACE-hard
problem .

Proof. We reduce the well-known PSPACE-hard prob-
lem of the inclusion of two regular expressions, into the prob-
lem of independence. Let us consider two regular expressions
E and E’. We define two tree queries V and C as shown in
Figure 5 where ’#’ is a new label occurring neither in E nor
in E′. We prove that V is dependent on C iff E * E′.

Suppose that V is dependent on C. There exists a docu-
ment T and an update q ∈ C such that V (q(T)) 6= V (T).
Therefore either (a) a node n of T labeled by ’Jury’ is ex-
tracted by V i.e. n ∈ V (T) but is no more extracted after
the update q i.e. n /∈ V (q(T)) or (b) a new node n labeled by
’Jury’ is extracted by V after the update q i.e. n ∈ V (q(T))
whereas it wasn’t before i.e. n /∈ V (T).
In case (a), the fact n /∈ V (q(T)) implies that n belongs
to the image of some mapping p of the tree query C on T :
therefore n has got sibling nodes n1 and n2, respectively
labeled by ’Author’ and ’Title’, that are the images by p
of the nodes 3 and 4 of C. Clearly, if E ⊆ E′, then the
subtree rooted at n1 in T after the update q still fulfills the
conditions required by the tree query V for the extraction
of n, contradicting the fact n /∈ V (q(T)).
Similarly in case (b), the facts n ∈ V (q(T)) and n /∈ V (T)
imply that n belongs to the image of some mapping p of the
tree query C into T : therefore n has got sibling nodes n1 and
n2, respectively labeled by ’Author’ and ’Title’, that are the
images by p of the nodes 3 and 4 of C. Again if E ⊆ E′, then
the subtree rooted at n1 in T before the update q fulfills the
conditions required by the tree query V for the extraction
of n, contradicting the fact n /∈ V (T).

Conversely if E * E′, there exists a word w in L(E) that
doesn’t belong to L(E′). Let w′ be a word of L(E′). We
consider the tree T0 shown in Figure 5 where: n1, n2 and
n denote the nodes respectively labeled by ’Author’, ’Title’
and ’Jury’, and w (respectively w’) denotes the sequence
of labels encountered on the path from the Author (respec-
tively Title) node to the # node. Because w′ belongs to
L(E′), n is extracted by V before any update q of C. Be-
cause w belongs to L(E), n2 is updated by any update of
C. Let us now consider the update q of C that removes the
path w′# from the subtree rooted at n2. Then n is no more
extracted by V after q because w doesn’t belong to L(E′).
So V is dependent on C.

4

2

3 4

2

3 4 5

(a) (b)

E E’

#

6

7

5

6

Jury

Thesis

Author Title

Presidentw w’

##

(c)

Members

 Name Publications Phone

/

Resources

UFR

1 1

JuryAuthor|TitleAuthor
Title

Update class C V iew V

Jury

Tree T0

Σ∗.ThesisΣ∗.Thesis

n2 nn1

Figure 5:

4.2 An independence criterion
According to the definitions of the preceding sections, a

view query V is dependent on an update class C in the con-
text of a schema Sc if and only if there is T ∈ valid(Sc),

there is q ∈ C with q(T) ∈ valid(Sc) and there is a tuple
→
n of

sub-trees in T satisfying: (1)
→
n∈ V (T) and

→
n /∈ V (q(T))

or (2)
→
n /∈ V (T) and

→
n∈ V (q(T)).

Equation (1) means that the extracted tuple
→
n disappears

after the update operation, thus there exists a trace tracep(V , T)
of V in T with respect to some mapping p satisfying one of
the following conditions:

• A node of tracep(V , T) has been modified by q and the

tuple
→
n is no more extracted after the update (case 1

of Figure 6).

• A subtree of
→
n was modified by q and

→
n does not

appear any more in the result of V ’s evaluation (case
2 of Figure 6).

Equation (2) means that a new tuple
→
n is extracted after

the update. This happens because the update q has gener-
ated a new trace tracep(V , q(T)) of V in q(T) allowing the

extraction of
→
n (case 3 of Figure 6).

Notation : If
→
n= (T1, ..., Tn) is a tuple of sub-trees, we

denote N (
→
n) = ∪n

i=1N (Ti).

Definition 3. Let L be the set of trees T such that:
(i) T ∈ valid(Sc)
(ii) There is a trace tracep(V , T) of V in T with respect to
some mapping p of V on T ,
(iii) There is a trace tracep′(C, T) of C in T with respect to
some mapping p′ of C on T ,
(iv) p′(Ic) ∈ N (tracep(V , T)) ∪N (Vp(T))

Case 3

updated node (1)

updated node (2)

Case 1

modified sub−tree

Case 2

(before the update) (after the update)

updated node (3)

Updated node

Trace of C

Trace of V

View evaluation

XML document

Tree q(T)Tree T

Figure 6:

Proposition 2. If L = ∅ then V is independent with
respect to C in the context of Sc.

Proof. Suppose that V is dependent on C in the context
of Sc, then equation (1) or equation (2) holds. The first
one implies the existence of a mapping p′ of C on T and a
mapping p of V on T such that p′(Ic) ∈ N (tracep(V , T)) ∪
N (Vp(T)). So L 6= ∅.
The second one implies the existence of a mapping p′ of C on
T and a mapping p of V on q(T). Since the updated node
is a leaf in the tree query C, the trace of C in T remains in
q(T). So there exists a mapping p′′ of C on q(T) (identical to
p′) with p′′(Ic) ∈ N (tracep(V , q(T))). Therefore q(T) ∈ L
and L 6= ∅.
Remark The criterion L = ∅ is not required for the inde-
pendence of a view with respect to an update class as shown
by the tree queries V and C of Figure 5 when E, E’, w and
w’ are empty words: the tree T0 belongs to L (and there-
fore L 6= ∅) because it satisfies the conditions of Definition
3; however it is easy to verify that V is independent with
respect to C.

5

4.3 Linear view queries
In the particular case where the view query is defined by a

linear tree, the independence criterion exhibited in the pre-
vious section becomes a necessary and sufficient condition
for the independence.

Definition 4. A linear query is a query defined by a lin-
ear tree.

Proposition 3. Let V be a linear view query, C an up-
date class, and Sc a schema. V is independent with respect
to C in the context of Sc iff L is empty.

Proof. By Proposition 2, we only have to prove that the
criterion L = ∅ is a necessary condition for the indepen-
dence. Suppose that L 6= ∅ and let T be a tree in L. We
show that T is a witness of the dependence of V with respect
to C: according to the definition of L, there are on T , two
mappings p and p′ of V and C respectively, and an updated
node n = p′(Ic) that belongs either toN (tracep(V, T)) (case
(a) of Figure 7) or to N (Vp(T)) (case (b) of Figure 7); be-
cause V is linear, in both cases, n is an ancestor or a de-
scendant of the extracted node m. So in both cases, we
specify the update q of C as shown in Figure 7: q keeps all
the structure of the subtree rooted at n and only adds, as
a common descendant of n and m, a new leaf node ν that
wasn’t occurring before in the subtree extracted by V . We
clearly have: V (q(T)) 6= V (T). Therefore V is dependent
on C.

selected node

n updated node

m

m

with respect to p
evaluation of

(case a) (case b)new added leaf

nV

ν

Figure 7: The linear view case

5. CHECKING THE INDEPENDENCE CRI-
TERION

To check the vacuity of L, we first define a tree automa-
ton A recognizing L. As we will see later, the size of this
automaton A can be proved as polynomial in the sizes of
V , C and Sc. Because the regularity of L, L’s vacuity test
is feasible in polynomial time with respect to the size of an
automaton recognizing L. This allows us to deduce that
the independence criterion, L = ∅, is testable in polynomial
time with respect to the sizes of V , C and Sc.

5.1 The trace automaton
Given a tree query R = (Σ, N, M, I, E), we first define an

automaton AR = (Σ, Q, δ, F) (where Q is the set of states,
δ the transition function and F the set of final states) that
recognizes the set of trees containing a trace of R. The con-
struction of AR uses finite word automata associated with
the regular expressions occurring in R: for each regular ex-
pression Ee (where e is an edge in R), let us denote by

L(Ee) the rational language defined by Ee; we use in fact

the rational languages L̃(Ee) = { w̃ / w ∈ L(Ee)}, each
of them consisting of the set of mirror images of words of
L(Ee). Intuitively, given a tree T and a mapping p of R in
T , a run of AR on T will simulate (see Figure 8) the runs

of word automata recognizing the words gp(e) = σ1σ2...σn−1.

We consider, for each edge e, a finite word automaton

Ae = (Σ, Qe, δe, t
0
e, fe) recognizing L̃(Ee). Without loss of

generality, we assume the three following properties:
(i) the sets {Qe, e ∈ M} are pairwise disjoined,
(ii) for each e, Ae has an unique initial state t0e and an unique
final state fe and,
(iii) for each e, if Re denotes the set of states of Qe that are
accessible from t0e using exactly one transition of δe, then
any state of Re isn’t accessible from any other state than t0e.

The assumption (iii) allows to characterize T ’s nodes that
are associated by p with a selected node of R (i.e. with a
node of I) as T ’s nodes that are associated, during a run of

AR, with a state of
[

e=(i,j)∈M/j∈I

Re.

We denote by Select(AR) this particular subset of states:

Select(AR) =
[

e=(i,j)∈M/j∈I

Re

We give in the next subsection the formal construction of
AR.

i

j
σ1

σi

σn

p(i)

p(j)

Ee

p̃e = σ1...σn−1 ∈ L(Ae)

TreeT Query R

Figure 8: Underlying intuition of AR’s construction

5.1.1 Construction of AR = (Σ, Q, δ, F)

Q (states) Let f and g be two states not occurring in
∪e∈MQe, we define: Q = ∪e∈MQe ∪ {f, g}
F (Final states) F = {f}
δ (Transitions) Let x be a label in Σ and t a state in Q, we
detail below the definition of L(x, t) = {w ∈ Q∗/(x, t, w) ∈
δ}. We denote by τ the trace of R which is being recognized
by some AR’s run, and by p its associated R’s mapping:

• If t = g, L(x,g)=g∗

This transition set allows the automaton AR to asso-
ciate a generic state g to a node n and to its descen-
dants when n doesn’t belong to the trace τ (transition
1 of Figure 9).

• If t ∈ Qe for some e ∈ M , L(x,t) is the union of three
transition sets, L(x, t) = L1(x, t) ∪ L2(x, t) ∪ L3(x, t):

6

– The set L1(x, t) is non empty only when e = (i, j)
and j is a leaf node of R. This transition set allows
AR to start a Ae’s run, from a leaf node of the

trace τ , in order to recognize the word gp(e).

L1(x, t) =

(
g∗ if j is a leaf node and (x, t0e, t) ∈ δe

∅ otherwise

(transition 2 of Figure 9).

g g g

g g

t

Transition 1

Transition 2

Figure 9: Transition1-2

– The set L2(x, t) allows AR to proceed further a
Ae’s run (transition 3 of Figure 10):

g g

gt

.....

Transition 3

g g

Transition 4

g g

t

t’

fe1
fek

fei

Figure 10: Transition 3-4

L2(x, t) =
[

{t′/(x,t′,t)∈δe}
g∗t′g∗

– The set L3(x, t) allows AR, when e = (i, j) and
Out(j) = {e1, e2, ..., ek}, to start a Ae’s run at

node j in order to recognize the word gp(e) when

the validations of the words p̃(e1)...p̃(ek) have been
successfully done:

L3(x, t) =

8
><
>:

g∗fe1g∗fe2g∗...g∗fekg∗ if j isn’t a leaf in R

and (x, t0e, t) ∈ δe

∅ otherwise

(transition 4 Figure 10)

• If t = f , L(/, f) = g∗fe1g∗ with Out(1) = {e1} in R
and L(x, f) = ∅ if x 6= /
This transition set allows a run of AR to successfully
stop at T ’s root.

5.1.2 Construction of ĀR=(Σ, U, η, F)

We now modify, for further needs, the automaton AR in
order to obtain a new automaton ĀR recognizing the same
language as AR but providing an identification of the nodes
of a R’s trace that are descendant of a selected node. The
idea is to slightly modify AR in order that successful runs
associate overlined states to such nodes.
Formally, if w = q1...qk, let us denote by w the word w =
q̄1...q̄k and S = {w̄/w ∈ S} for any set of words S. We
set ĀR=(Σ, U, η, F) with U = Q ∪ Q̄ and we define the
transition sets associated to η as follows:

• L(x, ḡ) = ḡ∗

• L(x, t) = L1(x, t) ∪ L2(x, t) ∪ L3(x, t)

• L(x, t) = L1(x, t) ∪ L3(x, t) if t ∈ Re, e=(i,j) and j ∈ I

• L(x, t) = L1(x, t)∪L2(x, t)∪L3(x, t) if t ∈ Qe, e=(i,j)
and j /∈ I

The two first transition sets associate overlined states to
nodes that are descendant of selected nodes while the third
one allows bottom-up ĀR’s runs to switch from overlined
states to non overlined states when a selected node is reached.

Let us now notice that, for any mapping p of R on T ,
nodes of N (tracep(V , T)) ∪ N (Vp(T)) are identified by the
following property: they are associated, by a ĀR’s run on
T , to states of U \ {g} i.e. to overlined states or to states of
∪e∈MQe ∪ {f}. This property will be used further.

5.2 Construction of A
We now construct the automaton A from automata AC

and ĀV , where AC = (Σ, QC , δC, FC) is the automaton built
from the update query C using the construction of 5.1.1 and
ĀV = (Σ, UV , ηV , FV) is the automaton built from the view
query V using the construction of 5.1.2. We use classical
constructions for tree automata that we remember below.

Product automaton A1 ×A2

Let A1 = (Σ, Q1, δ1, F1 ⊆ Q1) and A2 = (Σ, Q2, δ2, F2 ⊆
Q2) be two tree automata. The language L(A1) ∩ L(A2) is
recognized by the product automaton A1 ×A2 defined by :
A1 ×A2 = (Σ, Q1 ×Q2, ∆, F1 × F2)
with (x, (q, q′), (q1, q

′
1)(q2, q

′
2) . . . (qn, q′n)) ∈ ∆

iff (x, q, q1q2 . . . qn) ∈ δ1 and (x, q′, q′1q
′
2 . . . q′n) ∈ δ2

Automaton with selective states σ(B, S)
Let us consider a tree automaton B = (Σ, U, η, FU ⊆ U)

and a subset of states S ⊆ U . The set of trees T on which
there exists a run of B using at least one state of S, is a
regular language. It is recognized by the automaton σ(B, S)
deduced from B as follows : roughly speaking σ(B, S) works

similarly to B except that it uses, besides U , a copy Û of
U . Once a node n is associated with a state of S, ascendant
nodes of n are associated by a σ(B, S)’s run with states of

Û that are copies in Û of the states they are associated with
by a B’s run. Formally:
we denote by π the mapping from U ∪ Û to U defined by

7

π(û) = π(u) = u for each u ∈ U and we define

σ(B, S) = (Σ, U ∪ Û , η ∪ γ, F̂U) with F̂U = {û/u ∈ FU} and

γ = {(x, û, w)/w ∈ (U ∪ Û)∗S(U ∪ Û)∗ and (x, u, π(w)) ∈ η}
∪ {(x, û, w)/w ∈ (U ∪ Û)∗Û(U ∪ Û)∗ and (x, u, π(w)) ∈ η }.
The choice of F̂U as final states ensures that each run of
σ(B, S) uses at least one state of S.

From now on we suppose that a schema Sc is available and
specified by a finite automatonASc i.e., L(ASc) = valid(Sc)

Proposition 4. L = L(A) where A is the automaton
A = ASc×σ(AC×ĀV , S) with S = Select(AC)× (UV \{g}).

Proof. Remember that the language L is the set of trees
T satisfying the following conditions:
(i) T ∈ valid(Sc)
(ii) There is a trace tracep(V , T) of V in T with respect to
some mapping p of V on T ,
(iii) There is a trace tracep′(C, T) of C in T with respect to
some mapping p′ of C on T ,
(iv) p′(Ic) ∈ N (tracep(V , T)) ∪N (Vp(T)).
The set of trees satisfying conditions (ii) and (iii) is recog-
nized by AC × ĀV . Moreover a run of AC × ĀV on a tree
T associates nodes of p′(Ic) ∩N (tracep(V , T)) ∪N (Vp(T))
with a state of Select(AC) × (UV \ {g}). Therefore the set
of trees satisfying (ii), (iii) and (iv) is recognized by the au-
tomaton σ(AC ×ĀV , S) where S = Select(AC)× (UV \ {g}).
Adding condition (i), we get L = L(A).

5.3 Complexity aspects
In this section we analyze the complexity of the construc-

tion of the automaton A = ASc × σ(AC × ĀV , S). We start
with the complexity of the trace automaton construction.

Lemma 1. Let AR = (Σ, Q, δ, F) be the automaton built
in section 5.1.1 from the query R = (Σ, N, M, I, E) and let
am be the maximal arity of N ’s nodes. The size |AR| of AR

is in O(|Σ| × |R| × am).

Proof. Given t ∈ Q and x ∈ Σ, let AL(x,t) be a word au-
tomaton recognizing the language L(x, t) = w ∈ Q∗/(x, t, w) ∈ δ.
Following the construction of section 5.1.1, we have:

|AR| = |Q|+
X

(x,t)∈Σ×Q

|AL(x,t)|

= |Q|+ |AL(/,f)|+
X
x∈Σ

(|AL(x,g)|)

+
X

(x,t)∈Σ×QM

(|AL1(x,t)|+ |AL2(x,t)|+ |AL3(x,t)|)

where QM denotes ∪e∈MQe.

Let us first recall that |R| = |N | +
X
e∈M

|Ae| where Ae are

automata associated to the regular expressions Ee. There-

fore |Q| = |
[

e∈M

Qe∪{f, g}| is in O(|R|) and
X
e∈M

|δe| 6 |R|.

The result comes from the four following properties:

• ∀e ∈ M , ∀(x, t) ∈ Σ × Qe, |AL(x,g)| and |AL1(x,t)| are
in O(1)

Hence
X
x∈Σ

(|AL(x,g)|) is in O(|Σ|) and
X

(x,t)∈Σ×QM

(|AL1(x,t)|)

is in O(|Σ| × |R|)

• There is a constant K such that: ∀e ∈ M ,
∀(x, t) ∈ Σ×Qe, |AL2(x,t)| 6 K × |{t′/(x, t′, t) ∈ δe}|
But

X

(x,t)∈Σ×QM

(|AL2(x,t)|) =
X
e∈M

(
X

(x,t)∈Σ×Qe

(|AL2(x,t)|)).

Hence
X

(x,t)∈Σ×QM

(|AL2(x,t)|) is in O(
X
e∈M

|δe|)

• ∀e ∈ M , ∀(x, t) ∈ Σ × Qe, |AL3(x,t)| is in O(am) and

there is at most
X
e∈M

|δe| pairs (x, t) such that L3(x, t)

is not empty.

Hence
X

(x,t)∈Σ×QM

(|AL3(x,t)|) is in O(am × |R|)

• |AL(/,f)| is in O(1)

Lemma 2. Let B = (Σ, U, η, FU ⊆ U) be a tree automa-
ton, a subset S ⊆ U of states and = = σ(B, S) the automaton
with selective states built in section 5.2. The size |=| of =
is in O(|B|).

Proof. We have:
|=| = 2|U |+

X

(x,û)∈Σ×Û

|AL=(x,û)|+
X

(x,u)∈Σ×U

|AL=(x,u)|.

For each (x, u) ∈ Σ× U , L=(x, u) = LB(x, u) and

L=(x, û) = π−1(LB(x, u)) ∩ (U ∪ Û)∗(Û ∪ S)(U ∪ Û)∗.
So |AL=(x,û)| is in O(|ALB(x,u)|).
Because |B| = |U |+

X

(x,u)∈Σ×U

|ALB(x,u)|, we deduce that |=|

is in O(|B|).

Proposition 5. The size |A| of the automaton
A = ASc × σ(AC × ĀV , S) is in O(aCaV × |Σ|2 × |ASc| ×
|C|× |V |), where aC and aV are the maximal arities of C and
V respectively.

Proof. We have |A| 6 |ASc| × |σ(AC × ĀV , S)| and one
easily deduces from the construction of section 5.1.2 that
|ĀV | ≤ 2|AV |. Lemma 1 and 2 give then the result.

Proposition 6. The independence criterion L = ∅ is
polynomial and testable in O(a2

C a2
V |Σ|4|ASc|2×|C|2×|V |2)

time.

Proof. The standard algorithm for testing the emptiness
of A that amounts to compute, by saturation until a fixpoint
is reached, the subset Acc ⊆ Q of accessible states, can be
used. Its time complexity has been proved as quadratic in
|A|. The complexity of the independence criterion follows.

6. CONCLUSION
In this paper we have studied the problem of indepen-

dence between views and updates. Our main contribution
is a sufficient condition assuring the independence between
a view query and a class of updates, testable in polynomial
time. This condition is a necessary and sufficient condition
in the case of linear view queries. We also showed that the
problem of independence is in general PSPACE-hard.

For this study we chose a conceptual query language based
on trees labeled by regular expressions. This language is
quite general and includes some XPath fragments like tree
patterns of P ∗,//,[] introduced in [15]. Our results can thus
be applied to these fragments: an implementation of our

8

independence test and an experimental study remain to be
carried out, particularly in order to estimate how much time
it saves to launch the independence test instead of evaluating
the view query again.

Our analysis of independence between classes of updates
and view queries brings down to an analysis of indepen-
dence between two tree queries and could be used in other
contexts: the problem of commutation between two update
queries studied in [9] and in [5] is such an example. So we
think that our approach is quite general and adaptable to
application contexts requiring the analysis of relationships
between several tree queries.

7. REFERENCES
[1] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and

J. L. Wiener. Incremental maintenance for
materialized views over semistructured data. In Proc.
24th Int. Conf. Very Large Data Bases, VLDB, pages
38–49, 1998.

[2] M. A. Ali, A. A. Fernandes, and N. W. Paton. Movie:
An incremental maintenance system for materialized
object views. Data & Knowledge Engineering,
47:131–166, 2003.

[3] A. Arion, V. Benzaken, I. Manolescu, and
Y. Papakonstantinou. Structured materialized views
for xml queries. In VLDB ’07: Proceedings of the 33rd
international conference on Very large data bases,
2007.

[4] A. Balmin, F. Özcan, K. S. Beyer, R. J. Cochrane,
and H. Pirahesh. A framework for using materialized
xpath views in xml query processing. In VLDB ’04:
Proceedings of the Thirtieth international conference
on Very large data bases, 2004.

[5] M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas.
Verification of tree updates for optimization. In CAV,
volume 3576, pages 379–393. Springer, 2005.

[6] J. A. Blakeley, P.-A. Larson, and F. W. Tompa.
Efficiently updating materialized views. In SIGMOD
Conference, pages 61–71, 1986.

[7] C. Byun, I. Yun, and S. Park. An efficient detection of
conflicting updates in valid xml. In CIT ’07:
Proceedings of the 7th IEEE International Conference
on Computer and Information Technology,
Washington, DC, USA, 2007.

[8] K. Dimitrova, M. El-Sayed, and E. Rundensteiner.
Order-sensitive view maintenance of materialized
xquery views, 2003.

[9] G. Ghelli, K. H. Rose, and J. Siméon. Commutativity
analysis in xml update languages. In ICDT, pages
374–388, 2007.

[10] T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. pages 328–339, 1995.

[11] A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques, and
applictions. In Proc. 24th Int. Conf. Very Large Data
Bases, VLDB, 1995.

[12] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In ACM SIGMOD
international conference on Management of data,
pages 157–166. ACM, 1993.

[13] L. V. S. Lakshmanan, H. Wang, and Z. Zhao.
Answering tree pattern queries using views. In VLDB

’06: Proceedings of the 32nd international conference
on Very large data bases, 2006.

[14] H. Liefke and S. B. Davidson. View maintenance for
hierarchical semistructured data. In Data Warehousing
and Knowledge Discovery, pages 114–125, 2000.

[15] G. Miklau and D. Suciu. Containment and equivalence
for a fragment of xpath. ACM, 51:2–45, 2004.

[16] M. Onizuka, F. Y. Chan, R. Michigami, and
T. Honishi. Incremental maintenance for materialized
xpath/xslt views.

[17] L. Quan, L. Chen, and E. Rundensteiner. Efficient
refresh in an xql-based web caching system, 2000.

[18] M. Raghavachari and O. Shmueli. Conflicting xml
updates. In Advances in Database Technology -
EDBT, volume 3896, pages 552–569, 2006.

[19] A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S.
Candan. Incremental maintenance of path-expression
views. In ACM SIGMOD international conference on
Management of data, pages 443–454, 2005.

[20] M. H. Scholl, C. Laasch, and M. Tresch. Updatable
views in object-oriented databases. In Proc. 2nd Intl.
Conf. on Deductive and Object-Oriented Databases
(DOOD), number 566, 1991.

[21] D. Vista. Optimizing Incremental View Maintenance
Expressions In Relational Databases. Thèse de
doctorat, University of Toronto, 1996.

[22] W. C. XPath. Xml path language(xpath) version 1.0.
Novembre 1999.

[23] Y. Zhuge and H. Garcia-Molina. Graph structured
views and their incremental maintenance. In Proc.
14th IEEE Conf. Data Engineering, ICDE, pages
116–125. IEEE Computer Society, 1998.

9

